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We study the effect of crystal superstructures produced by orientational ordering of the ReO4 and ClO4

anions in the quasi-one-dimensional organic conductors, �TMTSF�2ReO4 and �TMTSF�2ClO4, on the angular
magnetoresistance oscillations observed in these materials. Folding of the Brillouin zone due to anion ordering
generates effective tunneling amplitudes between distant chains. These amplitudes cause multiple peaks in
interlayer conductivity for the magnetic-field orientations along the rational crystallographic directions �the
Lebed magic angles�. Different wave vectors of the anion ordering in �TMTSF�2ReO4 and �TMTSF�2ClO4

result in the odd and even Lebed angles, as observed experimentally. When a strong magnetic field is applied
parallel to the layers and perpendicular to the chains and exceeds a certain threshold, the interlayer tunneling
between different branches of the folded electron spectrum becomes possible, and interlayer conductivity
should increase sharply. This effect can be utilized to probe the anion ordering gaps in �TMTSF�2ClO4 and
�TMTSF�2ReO4. An application of this effect to �-�ET�2Cu�NCS�2 is also briefly discussed.
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I. INTRODUCTION

The quasi-one-dimensional �Q1D� organic conductors
�TMTSF�2X �where TMTSF is tetramethyltetraselenaful-
valene and X represents a monovalent anion, such as PF6,
ClO4, or ReO4� have very interesting physical properties,
including the quantum Hall effect and possibly triplet
superconductivity.1,2 These materials consist of parallel con-
ducting chains along the x axis, arranged in layers with the
interchain spacing b along the y axis and the interlayer spac-
ing c along the z axis. The electron-tunneling amplitudes
between the TMTSF molecular sites are highly anisotropic in
the three directions: ta : tb : tc=2500:250:10 K.1

These materials exhibit the angular magnetoresistance os-
cillations �AMRO�, where resistivity strongly changes as a
function of the magnetic-field orientation. There are three
basic types of AMRO: the Lebed magic angles3–7 for the
magnetic-field rotation in the �y ,z� plane, the Danner-Kang-
Chaikin �DKC� oscillations in the �x ,z� plane,8,9 and the
third angular effect in the �x ,y� plane.10–12 The Lebed oscil-
lations manifest themselves as sharp peaks in the interlayer
conductivity �zz occurring when the magnetic field points
from one chain to another along a rational crystallographic
direction, as illustrated in Fig. 1. Approximating the triclinic
crystal lattice of �TMTSF�2X by the orthogonal one, the
magic Lebed angles can be written as
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where n and m are integer numbers and B= �Bx ,By ,Bz�
=B�sin � cos � , sin � sin � , cos �� is the magnetic field. Ex-
perimentally, the Lebed effect is the most pronounced for
m=1. Lee and Naughton13,14 studied AMRO for generic ori-
entations of B, where all three effects coexist. They found
that the Lebed oscillations are enhanced when Bx�0,13 and
the DKC oscillations still exist in the presence of By �0.14

Although initially the different types of AMRO were
treated as separate phenomena, a unified picture emerged in
the recent years due to substantial experimental and theoret-
ical progress. A three-dimensional visualization of the ex-
perimentally measured �zz�B� �Ref. 15� demonstrated that
the different types on AMRO can be viewed as modulations
of the basic Lebed resonances. Measurements with carefully
placed electric contacts16 proved that AMRO exist only in
the transverse resistance Rzz and not in the longitudinal re-
sistance Rxx along the chains. Theory always predicted this
difference, but many experiments observed AMRO in Rxx as
well because of the mixing between different components of
the conductivity tensor. AMRO were found not only in the dc
conductivity but also in the ac conductivity at microwave
frequencies.17,18 The ac measurements were interpreted in
terms of the so-called period orbit resonance �POR�,19 which
is a generalization of the cyclotron resonance to more com-
plicated �e.g., open� Fermi surfaces.20 The ac resonances oc-
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FIG. 1. �Color online� A view along the chains of a Q1D metal
with the anion ordering at a wave vector Q. The filled and open
circles represent the chains with the energies �Eg. �a�
�TMTSF�2ReO4 and Q= �0,1 /2,1 /2�. �b� �TMTSF�2ClO4 and
Q= �0,1 /2,0�.
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cur at the angles depending on frequency � and deviating
from Eq. �1�,17,18 so the Lebed magic angles are not truly
magic.21,22 This observation eliminates theoretical scenarios
proposing a radical change in the ground state of the system
depending on the magnetic-field orientation along the magic
or nonmagic angles. This conclusion is also supported by the
absence of any angular effect in nuclear magnetic resonance
�NMR�.23

Given these experimental facts, AMRO most likely repre-
sent some sort of a resonance effect in the dc and ac transport
coefficients. The first theoretical calculation along these lines
was done in Ref. 24 using the Kubo formula with the elec-
tron wave functions for a magnetic field in the �y ,z� plane.
This quantum-mechanical calculation was then generalized
to include the Bx component of the magnetic field25 and the
anion superstructure of �TMTSF�2ClO4.26,27 In another theo-
retical approach, the Boltzmann kinetic equation was solved
for a constant relaxation time � by using quasiclassical elec-
tron trajectories on the Fermi surface.11–14,19,20,28–31 This so-
lution can be written in a general form using the so-called
Shockley tube integral32 or the Chambers formula,33 see also
the book.34 In the third theoretical approach, the interlayer
conductivity was calculated using a perturbation theory in
the electron-tunneling amplitude between two layers.35–37 In
this approach, AMRO originate from the Aharonov-Bohm
quantum interference in interlayer tunneling in the presence
of a magnetic field.37 All these three seemingly different the-
oretical approaches produce the same final results and are
essentially equivalent.

Despite substantial progress in understanding of AMRO
in Q1D conductors, some experimental results remain unex-
plained. One open problem is the angular oscillations of the
Nernst effect.38 Another unresolved problem is the angular
minimum and saturation of the interlayer resistivity Rzz ob-
served for a magnetic field in the y direction.6,14,15,39 Al-
though the manifestations of AMRO are qualitatively similar
in all members of the �TMTSF�2X family, direct comparison
of the measurements in �TMTSF�2PF6, �TMTSF�2ClO4, and
�TMTSF�2ReO4 shows substantial differences.39

For a magnetic-field rotation in the �y ,z� plane with Bx
=0, only three strong Lebed peaks in �zz with n=0, �1 are
observed in �TMTSF�2PF6.6,39 When special care is taken to
ensure that Bx=0, the very weak peaks with n= �2 in
�TMTSF�2PF6 disappear completely.15 In contrast, in
�TMTSF�2ReO4, strong Lebed oscillations are observed up
to n= �11.40 In �TMTSF�2ClO4, the Lebed oscillations are
much weaker in amplitude than in �TMTSF�2PF6 and
�TMTSF�2ReO4,39 but many Lebed resonance can be de-
tected after differentiation of the data with respect to the
angle of rotation.4,5 The strength of the DKC oscillations is
also very different in these materials. The DKC oscillations
are quite strong in �TMTSF�2ClO4, where they were origi-
nally discovered.8 In �TMTSF�2PF6, Kang et al.9 found very
weak DKC oscillations, but Danner and Chaikin39 found
them to be substantial. However, in �TMTSF�2ReO4, the
DKC oscillations are extremely weak and almost invisible.39

This dramatic difference in manifestations of AMRO in the
three materials requires a theoretical explanation.

When a magnetic field is rotated in the �y ,z� plane at Bx
=0, the theoretical calculations cited above show that the

Lebed peaks in �zz can exist only for those magic angles
�n ,m� where the interchain tunneling amplitudes in the di-
rections nb+mc are present.24,41 It is reasonable to expect
that the interplane tunneling amplitudes in �TMTSF�2PF6 ex-
ist between the nearest and next-nearest chains in the c and
c�b directions �see Fig. 1�. This would explain why only
the Lebed resonance with n=0, �1 are observed in
�TMTSF�2PF6. However, many magic angles with big num-
bers n are observed in �TMTSF�2ClO4 and �TMTSF�2ReO4.
It is hard to imagine that direct electron overlap exists be-
tween the chains separated by 11 interchain distances.

One way to resolve this problem is to take into account
the nonlinear electron dispersion along the chains. �All the-
oretical papers cited above make a linearized approximation
for the electron dispersion along the chains.� The first at-
tempt in this direction was made in Ref. 42, and a more
systematic study was presented in Refs. 43 and 44. The non-
linearity can indeed generate an effect similar, albeit not
completely equivalent, to the presence of many interchain
tunneling amplitudes. However, the nonlinearity alone is not
sufficient to explain the differences in AMRO between the
three compounds. Another problem is the absence of the
DKC oscillations in �TMTSF�2ReO4. One might think that
quantum coherence is too low in this material but the exis-
tence of 21 Lebed oscillations clearly refutes this idea.40 We
see that a detailed theoretical understanding of AMRO in the
�TMTSF�2X materials is challenging and requires additional
ideas.

We believe that the key to understanding the differences
in AMRO is the presence of anion ordering in
�TMTSF�2ClO4 and �TMTSF�2ReO4, and its absence in
�TMTSF�2PF6. PF6 is an octagonal centrosymmetric anion,
which does not experience any orientational ordering at low
temperatures. In contrast, ClO4 and ReO4 are tetragonal
anions without inversion symmetry. Because their crystal
sites have inversion symmetry, these anions have two differ-
ent orientations of the same energy. At low temperatures,
the anions experience orientational ordering and produce
crystal superstructures1 with the wave vectors
Q= �0,1 /2,0� in �TMTSF�2ClO4 �under ambient pressure�
and Q= �0,1 /2,1 /2� in �TMTSF�2ReO4 �under pressure
greater than about 10 kbar�, as shown in Fig. 1. Formation of
a crystal superstructure affects electron spectrum by folding
the Brillouin zone. In this paper, we show that reconstruction
of the electron dispersion caused by the anion ordering gen-
erates effective tunneling amplitudes between many distant
chains. This effect explains why many Lebed angles are ob-
served in �TMTSF�2ReO4 and �TMTSF�2ClO4 but not in
�TMTSF�2PF6. It also explains why the magic angles �Eq.
�1�� are observed only for odd n in �TMTSF�2ReO4 �Ref. 40�
and only for even n in �TMTSF�2ClO4 �Refs. 4 and 5� at
m=1. We also explain the differences in the DKC oscilla-
tions within the same framework.

In contrast to the previous theories of AMRO for the an-
ion superstructure of �TMTSF�2ClO4,26,27,30,43 we take into
account the direct effect of anion ordering on the interlayer
tunneling amplitude, which is especially important for
�TMTSF�2ReO4. In this way, we can capture the characteris-
tic features of AMRO in the three compounds without invok-
ing the nonlinearity of the longitudinal electron
dispersion.43,44
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In the second part of the paper �Sec. VI�, we study the
effect of a strong magnetic field parallel to the layers. We
show that when By is strong enough and exceeds a certain
threshold related to the anion gap Eg the interlayer tunneling
between different branches of the folded electron dispersion
becomes possible, and �zz should increases sharply. Experi-
mental observation of this effect would allow direct measure-
ment of Eg. This effect can be also applied to study the
interband tunneling in �-�ET�2Cu�NCS�2. A theory of this
effect cannot be formulated within the framework of quasi-
classical orbits on a warped Fermi surface. We calculate an
interlayer conductivity in the presence of anion ordering us-
ing the quantum limit, where the electron wave functions are
confined to the layers due to a strong parallel magnetic
field.45–48

II. CALCULATION OF INTERLAYER CONDUCTIVITY

The general form of the electron dispersion in a Q1D
metal is

��k� = � 	vF�kx 
 kF� + ���ky,kz� , �2�

where the energy � is measured from the Fermi energy and
k= �kx ,ky ,kz� is the electron wave vector. Here we linearize
the dispersion along the chains with the Fermi velocity vF
near the Fermi wave vectors �kF. There are two sheets of
the open Fermi surface, but we present calculations only for
the sheet with +vF. Since tc� tb, we can expand the trans-
verse dispersion �� to the lowest order in the interlayer tun-
neling amplitude tc,

���ky,kz� = 2tb�y�kyb� + 2tcf�kyb�cos�kzc� . �3�

For a simple model with electron tunneling between the
nearest chains in the absence of a superstructure, Eq. �3�
reduces to a standard tight-binding expression with �y�ky�
=cos�kyb� and f�kyb�=1. However, we will show in Secs. IV
and V that a nontrivial function f�kyb� appears in the inter-
layer tunneling term in the presence of anion ordering. This
effect was not considered in previous literature and plays a
crucial role in our consideration.

From the dispersion relation �2�, we obtain the electron
velocity v=�� /	�k,

vx = vF, vy �
2tb

	

d�y

dky
, vz = −

2tcc

	
f�kyb�sin�kzc� . �4�

In the quasiclassical approximation, the time-dependent elec-
tron wave vector k�t� follows the equation of motion,

	
dk�t�

dt
= ev�t� � B , �5�

where e is the electron charge, and the magnetic field B is in
the System International �SI� units. Given that vx=vFvz,
we find

dky
�t�

dt
� −

evFBz

	
,ky

�t� = −
�ct

b
+ ky

�0�,�c =
ebvFBz

	
, �6�

where �c is the analog of the cyclotron frequency for the
open Fermi surface. The equation of motion for kz is

dkz =
e

	
�vFBydt −

2tbBx

	

d�y

dky
dt� . �7�

Using dky /dt from Eq. �6�, we get

ckz
�t� = By��ct + Bx��y�ky

�t�� + ckz
�0�, �8�

where we introduced the dimensionless parameters,

By� =
By

Bz

c

b
, Bx� =

Bx

Bz

2tbc

	vF
. �9�

The variables By� and Bx� are proportional to the tangents of
the magnetic-field projections onto the �y ,z� and �x ,z�
planes, respectively.

The interlayer conductivity �zz is given by the Shockley
tube integral,34

�zz =
4e2

	
� � dky

�0�dkz
�0�

�2��3vF
�

−�

0

dt vz�k�0��vz�k�t��et�1/�−i��,

�10�

where � is a relaxation time and the factor 4 comes from the
two spin projections and the two sheets of the Fermi surface.
Substituting Eqs. �4�, �6�, and �8� into Eq. �10�, we find the
real part of �zz,

�zz =
e2tc

2c

�2	3�cvFb
Re	



�

0

2�

d��
0

�

d�f���f�� + ��

� exp
iBx���y��� − �y�� + ���

− ��1/�c� − iBy� 
 i�/�c�� , �11�

where �=bky
�0� and �=−�ct. Expanding the periodic func-

tions f���eiBx����� in Eq. �11� into the Fourier series with the
coefficients,

An�Bx�� =
1

2�
�

0

2�

e−in�f���eiBx��y���d� , �12�

we obtain

�zz

�0
=

1

2	



	
n=−�

� �An�Bx���
2

1 + ��c��2�n − By� 
 �/�c�2 . �13�

Here �0= �4e2tc
2�c� / ��	3vFb� is the interlayer dc conductiv-

ity at B=0 and the � terms are the contributions from the
two sheets of the Fermi surface. In the rest of the paper, we
shall focus on the dc conductivity �zz at �=0 although Eq.
�13� also gives the ac conductivity.

The Lebed effect corresponds to the resonant peaks of �zz
in Eq. �13� achieved at By�=n, where the condition �1� for
m=1 is satisfied. In a simple model without anion ordering,
where �y =cos�kyb� and f =1, Eq. �12� reduces to An�Bx��
= inJn�Bx��, where Jn is the Bessel function. In this case, Eq.
�13� reproduces the result found in Refs. 25, 31, and 35–37.
However, the coefficients Jn�Bx�� vanish for n�0 at Bx=0 so
there are no Lebed oscillations in this model for a magnetic-
field rotation in the �y ,z� plane. The DKC effect originates
from the oscillations of Jn�Bx�� vs Bx� in the numerator of Eq.
�13�.
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Interestingly, Eq. �13� with �An�2=Jn
2�Bx�� and �=0 is ex-

actly the same as the equation49,50 that describes the Mach-
Zehnder interference in a superconducting qubit driven by an
ac electric field and subjected to a dc bias.49–53 The two
states of the qubit correspond to the two adjacent layers of a
Q1D conductor coupled by the tunneling amplitude tc. The
frequency of the ac field for the qubit maps to the frequency
�c in Eq. �6�, the detuning of the qubit maps to By��c
=ecvFBy /	, and the amplitude of the ac modulation maps to
Bx� in Eq. �9�. The contour plot of Eq. �13� shown in Fig. 2 of
Ref. 37 is exactly the same as in Refs. 49 and 50 and it
represents the so-called Bessel staircase. The same equation
also appears in the theory of laser cooling in ion traps.54 This
correspondence is not just a mathematical curiosity but it
also reflects profound similarity between these highly coher-
ent quantum system, where the oscillatory patterns are
caused by phase interference due to applied electric and
magnetic fields.

III. INTERLAYER CONDUCTIVITY IN (TMTSF)2PF6

WITHOUT ANION ORDERING

Let us first discuss the case of �TMTSF�2PF6, which does
not have anion ordering. In order to observe more than one
Lebed angle, we need to introduce the tunneling amplitude tc�
between next-nearest neighboring chains, as shown in Fig.
1�b�. Including this term in the transverse dispersion �Eq.
�3��, we find for �TMTSF�2PF6,

�y��� = cos �, f��� = 1 + 2
tc�

tc
cos �, � = bky . �14�

In a more general case, where the amplitudes tn correspond-
ing to the tunneling vectors c+nb are present, the transverse
dispersion relation can be written as

���ky,kz� = 2tb cos�kyb� + 2	
l

tl cos�kzc + lkyb� . �15�

Equation �14� is the special case of Eq. �15� with t0= tc and
t�1= tc�.

Generalizing the derivation presented in Sec. II to the
transverse dispersion relation �15�, we find that the interlayer
conductivity �zz is given by Eq. �13� with the following co-
efficients An �Ref. 55�:

An�Bx�� =
1

tc
	

l

in+ltlJn+l�Bx�� . �16�

In the case of �TMTSF�2PF6, Eqs. �12� and �14� or Eq. �16�
give

An�Bx�� = inJn�Bx�� + in+1 tc�

tc
Jn+1�Bx�� + in−l tc�

tc
Jn−1�Bx�� .

�17�

Substituting Eq. �17� into Eq. �13�, we obtain �zz for
�TMTSF�2PF6. When Bx�=0, Eq. �17� gives nonzero coeffi-
cients An only for n=0 and n= �1. Thus, Eq. �13� exhibits
the Lebed peaks only at n=0 and n= �1 with the heights
proportional to tc

2 and �tc��
2 for a magnetic-field rotation in the

�y ,z� plane.

When we consider the DKC oscillations at By�=0, i.e., for
a magnetic-field rotation in the �x ,z� plane, the sum in Eq.
�13� is dominated by the term with n=0 because the other
terms have the big factor ��c��2 in the denominator. Keeping
only the term with n=0 and using Eq. �17�, we can write
approximately,

�zz�Bx��
�0

� J0�Bx�� + 2i
tc�

tc
J1�Bx��2

. �18�

When tc�=0, Eq. �18� vanishes for the angles where J0�Bx��
=0, which is a manifestation of the DKC oscillations. How-
ever, in the presence of tc��0, Eq. �18� does not vanish for
any angles so the DKC oscillations are partially suppressed,
although some modulation of �zz vs Bx� remains. We see that
the presence of tunneling amplitudes tl to more distant chains
enhances the Lebed oscillations but suppresses the DKC os-
cillations. This conclusion was already made in Ref. 37.

IV. ANION ORDERING IN (TMTSF)2ReO4

The ReO4 anions order with the wave vector Q
= �0,1 /2,1 /2� under pressure. This causes the energies of
the odd and even chains to split by �Eg, as illustrated in Fig.
1�a�. The Hamiltonian of interchain tunneling is described by
a 2�2 matrix representing the even and odd chains:56

H� = � Eg 2tb cos�kyb� + 2tc cos�kzc�
c.c. − Eg

� . �19�

The eigenvalues of the matrix �19� give the transverse elec-
tron dispersion relation,

�� = � ��2tb cos�kyb� + 2tc cos�kzc��2 + Eg
2. �20�

Expanding Eq. �20� to the zeroth and first order in tc, we find
the functions �y�ky� and f�ky� in Eq. �3�,

�y��� = � �cos2 � + �Eg/2tb�2, � = bky , �21�

f��� = �
cos �

�cos2 � + �Eg/2tb�2
. �22�

The function f��� in Eq. �22� is close to a square wave for
Eg / tb�1, as shown in Fig. 2�a�. Its Fourier coefficients An,
given by Eq. �12� with Bx�=0, are nonzero only for odd n and
decay as 1 /n. Transforming Eq. �3� from the momentum
space to the real space, we find that the Fourier coefficients
of f�kyb� generate effective interplane tunneling amplitudes
along the vectors c+nb with odd n, which are shown in Fig.
1�a� by the arrows. Initially, the model has only the tunneling
amplitudes tb and tc between the nearest chains, but the anion
ordering generates effective tunneling amplitudes between
many chains. The higher-order expansion of Eq. �20� in tc
would generate effective tunneling amplitudes along the vec-
tors mc+nb with m and n of the same parity between the
sites of the same type, either open circles or closed circles in
Fig. 1�a�. However, one should keep in mind that this heu-
ristic real-space picture40 is an oversimplification, and an ac-
curate calculation in the momentum space should be per-
formed as described above.
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In Fig. 3 we show the normalized dc conductivity calcu-
lated from Eq. �13� for Bx�=0 and �c�=�50 using the Fourier
coefficients An from Eq. �12�. Since An�0 only for odd n,
therefore �zz has peaks only at the odd Lebed angles, as
shown in Fig. 3 and observed in �TMTSF�2ReO4.40 The
higher-order expansion of Eq. �20� in tc would generate
peaks at the Lebed magic angles with m and n of the same
parity in Eq. �1�, as observed in Ref. 40. Because of the
anion superstructure, Eq. �20� is highly nonlinear in cos �;
so its Fourier expansion generates a big number of harmon-
ics, which produce a big number of Lebed peaks in AMRO.
This is the qualitative reason why so many Lebed peaks are
observed in �TMTSF�2ReO4, in contrast to �TMTSF�2PF6,
which has no anion superstructure.

Figure 4 shows a contour plot of ln��zz /�0� vs Bx� and By�,
as calculated from Eq. �13� using Eqs. �12�, �21�, and �22�.
The conductivity is maximal at the vertical lines correspond-
ing to the odd Lebed magic angles. At a fixed Lebed angle,
the weak modulation of �zz vs Bx� �along a vertical line�
corresponds to the DKC oscillations. Figure 4 shows that the
DKC oscillations are very weak because the coefficients
An�Bx�� �Eq. �12�� do not have zeros vs Bx� in the presence of
anion ordering, unlike the Bessel functions Jn�Bx�� in a simple

model. This is a theoretical explanation of why the DKC
oscillations in �TMTSF�2ReO4 are very weak and barely de-
tectable experimentally.40

V. ANION ORDERING IN (TMTSF)2ClO4

In the case of �TMTSF�2ClO4, in order to observe mul-
tiple Lebed angles, we need to take into account the tunnel-
ing amplitude tc� introduced in Sec. III and shown in Fig.
1�b�. For the anion ordering with Q= �0,1 /2,0�, the inter-
chain tunneling is described by the Hamiltonian,

H� = �Eg + 2tc cos�kzc� cos�kyb��2tb + 4tc� cos�kzc��
c.c. − Eg + 2tc cos�kzc�

� .

�23�

The eigenvalues of the matrix �23� give the transverse elec-
tron dispersion relation,

�� = 2tc cos�kzc� � �cos2�kyb��2tb + 4tc� cos�kzc��2 + Eg
2.

�24�

Expanding Eq. �24� to the zeroth and first order in tc and
comparing it with Eq. �3�, we find �y��� to be the same as in
Eq. �21� and

f��� = 1 �
tc�

tc

2 cos2 �

�cos2 � + �Eg/2tb�2
. �25�

Only the second term in Eq. �25� generates the coeffi-
cients An with n�0 when substituted into Eq. �12� at Bx=0.
For Eg / tb�1, this term is close to a rectified cosine signal, as
shown in Fig. 2�b�, and its Fourier coefficients decay as 1 /n2

for large n. It has nonzero Fourier coefficients only for even
n, thus �zz vs By� has peaks at the even Lebed angles, as
shown in Fig. 5 for Bx�=0 and observed experimentally in
�TMTSF�2ClO4.4,5 Because the second term in Eq. �25� is
highly nonlinear in cos �, it generates many harmonics and
many Lebed peaks. However, they decay with the increase in
n, faster in �TMTSF�2ClO4 than in �TMTSF�2ReO4. More-
over, because tc� is small, the Lebed oscillations in
�TMTSF�2ClO4 are weak, in agreement with the observa-
tions in Refs. 4, 5, and 39. As discussed in Sec. III, the DKC
oscillations are controlled by the coefficient A0�Bx�� in Eq.
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�13�. The first term in Eq. �25� gives the main contribution to
A0�Bx��, proportional to J0�Bx��. Thus, the DKC oscillations
are relatively strong in �TMTSF�2ClO4, as observed in Refs.
8 and 39, although they are somewhat reduced by the second
term in Eq. �25�.

We conclude that the different types of anion ordering in
�TMTSF�2ReO4 and �TMTSF�2ClO4 can indeed explain the
characteristic features of AMRO in these materials. In
�TMTSF�2ReO4, the Lebed oscillations are strong and nu-
merous but the DKC oscillations are very weak. In
�TMTSF�2ClO4, the Lebed oscillations are numerous but
weak, whereas the DKC oscillations are relatively strong. On
the other hand, there is no anion superstructure in
�TMTSF�2PF6. This material exhibits a few but strong Lebed
oscillations and partially suppressed DKC oscillations.

VI. INTERBAND TUNNELING IN A STRONG MAGNETIC
FIELD PARALLEL TO THE LAYERS

Folding of the Brillouin zone due to anion ordering pro-
duces two branches �or two bands� of the electron dispersion,
which we label by the index �=� according to the sign in
Eq. �21�. The Fermi surfaces of the two bands, obtained from
Eq. �2�, are shown by the two solid lines in Fig. 6 for
Eg / tb=0.1. �This picture is for the Fermi-surface sheets near
+kF.�

In this section, we study the interlayer conductivity in a
strong magnetic field �Bx ,By ,0� parallel to the layers. We use
the formalism developed in Refs. 35–37 and calculate �zz
between just two layers, i.e., for a bilayer. Assuming that tc is
very weak, one can argue that, in the lowest order in tc, the
interlayer conductivity of a bulk multilayer crystal is deter-
mined by the interlayer conductivity between a pair of
layers.56

The tunneling Hamiltonian between layers 1 and 2 is

Ĥc = tc� �̂2
†�r��̂1�r�ei��r�d2r + H.c. . , �26�

��r� =
ec

	
Az�r�, Az�r� = Bxy − Byx , �27�

where �̂1,2 are the electron destruction operators in layers 1
and 2. Here Az is the vector potential of the in-plane mag-
netic field and ��r� is the corresponding gauge phase accu-
mulated in the process of tunneling across the interlayer
spacing c. Substituting Eq. �27� into Eq. �26� and using mo-
mentum representation in the �x ,y� plane, we observe that
the in-plane wave vector of the electron changes from k to
k+q in the process of tunneling,37 where the vector q is

q = �qx,qy� =
ec

	
�By,− Bx� . �28�

Thus, the Fermi surfaces of the second layer are shifted by
the vector q relative to the Fermi surfaces of the first layer as
shown by the two dashed lines in Fig. 6. A similar picture
was discussed for closed Fermi surfaces in semiconducting
bilayers in Refs. 35 and 57–59.

The interlayer conductivity �zz
�� between the bands � and

� is given by the following expression:35,60

�zz
�� =

e2tc
2c

	�
	

k
�M���2S�k,EF�S�k + q,EF� , �29�

where M��= ���
�2��k+q� ���

�1��k�� is the scalar product be-
tween the in-plane electron wave functions belonging to ad-
jacent layers. These matrix elements are discussed in more
detail in Appendix. The total interlayer conductivity is the
sum over all bands �zz=	���zz

��. The function S�k ,EF� is the
spectral density of the in-plane electron Green’s function
evaluated at the Fermi energy EF as a function of the wave
vector k,35,60

S�k,EF� =
2�

�EF − ��k��2 + �2 , �30�

where �=	 /2� is the relaxation rate and ��k� is the electron
dispersion within the layer.
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When � is small, i.e., when the electron quasiparticles
have a long lifetime �, the spectral function �30� can be re-
placed by a delta function, S�k ,EF��2���EF−��k��. Substi-
tuting this expression into Eq. �29�, we find

�zz
�� =

e2tc
2c�M̃���2

	�
� � dkydkx��	vFkx + �2tb�y�kyb��

� ��	vF�kx − qx� + �2tb�y�kyb − qyb�� , �31�

where the matrix element M̃�� is evaluated at the points
where both delta functions are satisfied. Integrating Eq. �31�
over kx, we find

�zz
�� =

e2tc
2c�M̃���2

�	2vF
� dky��g���ky�� , �32�

where the function g���ky� is

g���ky� = vFqx + 2tb���y�kyb� − ��y�kyb − qyb�� . �33�

Taking the integral �Eq. �32��, we find

�zz
�� =

e2tc
2c

�	2vF
	
k̃y

�M���k̃y��2

��g��/�ky�
, �34�

where the sum is taken over the points k̃y where the equation

g���k̃y�=0 is satisfied. Notice that the relaxation time � drops
out from Eq. �34�, so �zz should be temperature-independent
in a strong parallel magnetic field.35

Equation �31� shows that a nonzero contribution to inter-
layer conductivity comes from the points where both delta
functions are satisfied, i.e., the initial and final states belong
to the Fermi surfaces of different layers. Geometrically, these

are the intersection points k̃y
�1� and k̃y

�2� of the solid and
dashed lines in Fig. 6. Depending on which Fermi surfaces
intersect in Fig. 6, electrons can tunnel between different
bands � ,�=� in the folded Brillouin zone. The equation

g���k̃y�=0 has solutions only in some regions of the �qx ,qy�
space, as shown by the thick solid lines in Figs. 7 and 8.
Above the diagonal line in Figs. 7 and 8, the interlayer tun-
neling is possible only between the bands of the same type
�=�. If qx exceeds the threshold value,

	vFqx = ByecvF � 2Eg, �35�

the interlayer tunneling between different bands, �=−�, be-
comes possible in the lower right region in Figs. 7 and 8. No
interlayer tunneling is possible in the intermediate region in
Figs. 7 and 8, where the shifted Fermi surfaces in Fig. 6 do
not cross. The boundaries of the regions are determined by
the condition that the displaced Fermi surface touches the
other one.

The plots of the interlayer conductivity �zz, calculated
from Eq. �34�, are shown in Figs. 7 and 8 as functions of
By �qx for several fixed values of Bx�qy. We observe that
the interlayer conductivity vanishes in the intermediate re-
gion and has peaks at the boundaries. The peaks originate
from the increase in the phase volume in the integral �Eq.
�31�� when the two Fermi surfaces touch each other. Figure 7
corresponds to the anion superstructure of �TMTSF�2ReO4.

We observe that, when the magnetic field is applied along the
y axis �Bx=0�, the interlayer conductivity �zz�By� is strongly
suppressed until By exceeds the threshold, and then �zz in-
creases sharply. The value of Eg can be determined from the
measured threshold field By via Eq. �35�. Figure 8 corre-
sponds to the anion superstructure of �TMTSF�2ClO4. In this
case, the eigenfunctions of different bands �=−� are or-
thogonal so the matrix element M−+ vanishes for qy =0 �see
Appendix�. Thus, in order to get a nonzero interlayer con-
ductivity in �TMTSF�2ClO4, it is necessary to have a nonzero
component Bx�0 so that qy �0.

0 1 2 3 4 5
0

1

2

3

4

5
(TMTSF)

2
ReO

4

h̄vF qx/Eg = edvF By/cEg

(a
rb

.
un

it
s)

2t
b
q y

b/
E

g
=

2t
b
eb

d
B

x
/
ch̄

E
g

σ
z
z

no tunneling interband tunneling

intraband tunneling

FIG. 7. �Color online� Phase diagram of interlayer tunneling vs
the normalized in-plane magnetic-field components By and Bx. Tun-
neling between the same and different types of bands is possible in
the upper left and the lower right regions of the diagram, corre-
spondingly, and not possible in the intermediate region. The thin
curves show the interlayer conductivity �zz calculated using Eq.
�34� as a function of By for several values of Bx for the superstruc-
ture of �TMTSF�2ReO4.

0 1 2 3 4 5
0

1

2

3

4

5

(TMTSF)
2
ClO

4

σ
z
z

2t
b
q y

b/
E

g
=

2t
b
eb

d
B

x
/
ch̄

E
g

h̄vF qx/Eg = edvF By/cEg

(a
rb

.
un

it
s)

no tunneling interband tunneling

intraband tunneling

FIG. 8. �Color online� The same as in Fig. 7 but for the super-
structure of �TMTSF�2ClO4.

ANGULAR MAGNETORESISTANCE OSCILLATIONS IN… PHYSICAL REVIEW B 78, 125404 �2008�

125404-7



According to the measurements in Ref. 18, the Fermi ve-
locity in �TMTSF�2ClO4 is vF�105 m /s. Substituting this
value and the interlayer distance c=1.35 nm �Ref. 1� into
Eq. �35� and using the maximal stationary field of 45 T avail-
able at National High Magnetic Field Laboratory �NHMFL�
in Tallahassee, we find the maximal anion gap 2Eg�70 K
that can be probed using this method. Various estimates of Eg
are reviewed in Ref. 61. References 27 and 62 estimated Eg
as 40 /50 K so the field of 45 T may be sufficient to exceed
the threshold �Eq. �35�� at the ambient pressure. The experi-
ment can be also performed in pulsed fields or under pres-
sure, where the anion superstructure is progressively
suppressed.63 Measurements of the interlayer conductivity
using pulsed magnetic fields of 46 T were performed in
�TMTSF�2ClO4,64 but the field was applied close to the x
axis rather than to the y axis, as required for our effect.

A similar analysis can be also applied to the material
�-�ET�2Cu�NCS�2, whose in-plane Fermi surface is shown in
Fig. 9. The separation �k between the � and � branches of
the Fermi surface can be measured by applying an in-plane
magnetic field in the horizontal direction in Fig. 9. This field
shifts the Fermi surface of one layer by the vector q shown in
Fig. 9. The threshold magnetic field, at which the � branch in
one layer starts to touch the � branch in the other layer, can
be calculated from Eq. �28�. Using �k=0.17 nm−1 and the
interlayer distance c=1.62 nm,1,65 we estimate that the
threshold magnetic field is of the order of 430 T, which is
beyond the current experimental capabilities.

VII. CONCLUSIONS

We have shown that the modifications of the electron dis-
persion due to the anion ordering in �TMTSF�2ReO4 and
�TMTSF�2ClO4 generate effective tunneling amplitudes be-
tween many distant chains. These amplitudes cause peaks in
the interlayer conductivity �zz at many Lebed magic angles
�Eq. �1��. The different wave vectors of the anion ordering,
Q= �0,1 /2,1 /2� in �TMTSF�2ReO4 and Q= �0,1 /2,0� in
�TMTSF�2ClO4, result in the odd and even Lebed magic
angles, as observed experimentally.40,63 Our theory also ex-
plains why the Lebed oscillations are strong and the DKC
oscillations are weak in �TMTSF�2ReO4, and vice versa in
�TMTSF�2ClO4, as observed experimentally.39

When a strong magnetic field is applied parallel to the
layers and By exceeds a certain threshold, then interlayer

tunneling between different branches of the Fermi surface,
produced by folding of the Brillouin zone, should become
possible. This effect would be observed as a sharp increase in
interlayer conductivity. It can be utilized for a direct mea-
surement of the anion gap Eg. Theoretical description of this
effect required a quantum-mechanical treatment of the wave
functions confined to different layers and cannot be achieved
within the framework of quasiclassical electron orbits on a
warped Fermi surface.

Experimental observation of the high number of magic
angles �up to 21 in Ref. 40� demonstrates a very high level of
quantum coherence achieved in the Q1D organic conductors
at low temperatures. This is remarkable given that the
�TMTSF�2X materials have strong electron interactions. In
different parts of their rich phase diagram, these materials
have the Mott insulating phase and other exotic phases.1,2 It
would be very interesting to study what happens to AMRO
when the system is driven toward the Mott state using pres-
sure or other variables.

We point out that the theory of the angular magnetoresis-
tance oscillations �AMRO� in Q1D conductors is equivalent
to the mathematically description of the Mach-Zehnder inter-
ference in a driven superconducting qubit49–53 and of laser
cooling in ion traps.54 The similarity in the behavior of these
systems demonstrates that quantum coherence in the Q1D
organic conductors at low temperatures is as high as in the
superconducting qubits and ion traps, which are actively con-
sidered for applications in quantum computing and quantum
information. Thus, the physics of Q1D conductors may have
applications in quantum engineering well beyond the domain
of solid-state material science.
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APPENDIX: CALCULATION OF THE MATRIX
ELEMENTS

In this appendix, we calculate the matrix elements of in-
terlayer tunneling introduced in Eq. �29�.

In the case of �TMTSF�2ClO4, the interlayer tunneling
with the amplitude tc occurs between the chains of the same
type, as shown in Fig. 1�b�.56 The in-plane Hamiltonians of
two adjacent layers are given by the same expression,

Ĥ = � Eg 2tb cos�kyb�
2tb cos�kyb� − Eg

� . �A1�

The eigenvalues �� and the eigenvectors ���� of the Hamil-
tonian �A1� are

�� = � ��2tb cos�kyb��2 + Eg
2, �A2�

����ky�� =
1

N�

��� + Eg,2tb cos kyb� , �A3�

and

ky

kx
B

q

α

β

∆k

FIG. 9. �Color online� The in-plane Fermi surface of
�-�ET�2Cu�NCS�2. The � and � branches of the Fermi surface are
separated by the distance �k in the momentum space.
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N� = ��2tb cos�kyb��2 + ��� + Eg�2. �A4�

The matrix elements of tunneling are proportional to the sca-
lar products of the wave functions in adjacent layers,

M−− = ��−�ky + qy���−�ky�� , �A5�

M++ = ��+�ky + qy���+�ky�� , �A6�

for tunneling between the same kinds of bands and

M−+ = ��−�ky + qy���+�ky�� �A7�

between different kinds of bands. It is clear from Eq. �A7�
that M−+ vanishes for qy =0 because ��+�ky�� and ��−�ky�� are
orthogonal.

In the case of �TMTSF�2ReO4, the interlayer tunneling
with the amplitude tc occurs between the chains of different
types. The in-plane Hamiltonian of one layer has the form
�A1�, whereas the sign of Eg is reversed in the Hamiltonian
H� of another layer

H� = � − Eg 2tb cos�kyb�
2tb cos�kyb� Eg

� . �A8�

The eigenvalues of H� are the same as in Eq. �A2� but the
corresponding eigenvectors are different,

���� �ky�� =
1

N��
��� − Eg,2tb cos kyb� , �A9�

N+� = N−, N−� = N+. �A10�

The scalar products of the wave functions in the adjacent
layers now are

M−− = ��−��ky + qy���−�ky�� , �A11�

M++ = ��+��ky + qy���+�ky�� , �A12�

for the same kinds of bands and

M−+ = ��−��ky + qy���+�ky�� �A13�

for different kinds of bands. Now M−+ does not vanish for
qy =0 because ��+�ky�� and ��−�ky�� are not orthogonal.
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